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A methodology is developed and implemented to mitigate
the lengthy software development cycle typically associated
with constructing a discrete adjoint solver for aerodynamic
simulations. The approach is based on a complex-variable
formulation that enables straightforward differentiation of
complicated real-valued functions. An automated scripting
process is used to create the complex-variable form of the
set of discrete equations. An efficient method for assembling
the residual and cost function linearizations is developed.
The accuracy of the implementation is verified through
comparisons with a discrete direct method as well as a
previously developed handcoded discrete adjoint approach.
Comparisons are also shown for a large-scale configuration to
establish the computational efficiency of the present scheme.
To ultimately demonstrate the power of the approach, the
implementation is extended to high temperature gas flows
in chemical nonequilibrium. Finally, several fruitful research
and development avenues enabled by the current work are
suggested.

1 Introduction

IN THE FIELD of gradient-based aerodynamic design opti-
mization, there are a number of options available to obtain
sensitivity information from computational fluid dynamics
(CFD) solvers, and the burden associated with implementing
these methods varies widely. Moreover, the efficiency and
accuracy of the results depend highly on the method chosen.
Perhaps the most straightforward of these schemes is a
simple finite difference algorithm.! In this approach, the solver
may be treated as a “black box” and sensitivities are generated
by merely differencing neighboring solutions. The advantage
of this technique is its ease of implementation; however,
its accuracy can vary widely with the perturbation size.
Central differencing is theoretically second-order accurate, but
subtractive cancellation error due to finite precision arithmetic
limits the effective step size that can be used. In addition, the
cost of the method scales linearly with the number of design
variables.
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Direct differentiation? and adjoint® approaches provide
alternative, more elaborate means for obtaining sensitivity
information. Whether to use a direct or adjoint approach is
usually determined by the parameters of the problem. For
cases involving many objectives or constraints and relatively
few design variables, the direct approach is appropriate. In this
case the solution of an additional linear system of equations for
each design variable yields sensitivity information for all of the
dependent variables in the flowfield. Conversely, the adjoint
approach yields sensitivity information for a single function
with respect to many design variables at the cost of solving
a single linear system of equations. For typical aerodynamic
design problems where the number of variables is large
and there are relatively few objectives and constraints, the
adjoint approach is generally preferred. Moreover, the adjoint
approach may also be used to obtain mathematically rigorous
mesh adaptation information that is often nonintuitive and
can be used to efficiently guide output-based computational
simulations to grid-converged results.*

Both the direct and adjoint techniques may be applied in
either a continuous or discrete setting, depending on the order
in which the differentiation and discretization processes are
performed; the current work focuses on the discrete variant
of the adjoint approach. One major advantage of the discrete
approach is that the system of auxiliary equations is uniquely
determined by the baseline discretization of the governing
equations. Although perhaps difficult to achieve in practice,
this property implies that the implementation of the adjoint
system can be automated. This is not true for a continuous
approach where changes to the baseline equation set require
new derivations of the associated adjoint operators prior to
implementation. These operators may prove prohibitively
difficult to obtain for complicated functions such as turbulence
models and finite-rate chemistry. Another advantage of the
discrete approach is that the results can be rigorously verified
using the baseline code because the linearizations take place
at the discrete level. In a continuous adjoint context, the
“correct” answer is generally not known and verification of the
adjoint discretization for even moderately complex problems
can be extremely difficult, if not impossible. The linearization
of the discrete system also ensures that the design optimization
framework uses gradients that are discretely consistent with
the analysis problem.

Regardless of whether a direct or adjoint method is used,
the discrete form of both approaches ultimately requires an
exact linearization of the discrete residual vector and the
cost function of interest with respect to both the flowfield
variables and the grid. Obtaining these linearizations by hand
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is time-consuming and error-prone; manually differentiating
a CFD solver for large-scale turbulent flow applications

is a monumental undertaking. For example, the discrete
adjoint implementation has taken more than 5 years to
mature into a robust and accurate tool.® Furthermore,
any changes to the fundamental discretization, boundary
conditions, physical models, or objective function require new
linearizations. This lengthy software development cycle has
been the primary impediment to widespread use of either
approach in conjunction with Euler- and Navier-Stokes-based
simulation tools. Tools aimed at automating this process
have been under development for some time:® however,
these applications are seldom “hands-off” and frequently
fail to produce code that rivals the speed and low storage
requirements of hand-developed implementations.

In 1967, Lyness introduced a technique based on the use
of complex variables that allows derivatives of a real-valued
function to be computed with minimal changes to the analysis
code.” This approach yields sensitivity information equivalent
to a discrete direct method and has been applied to a Reynolds-
averaged Navier-Stokes solver for three-dimensional turbulent
flow on unstructured grids.® Recently, an automated form
of this capability was developed, where a scripting approach
is used to automatically convert the entire baseline solver
to a complex-variable formulation, including such constructs
as the file I/O and parallel communication.® Unfortunately,
the cost of the complex-variable approach, like that of direct
differentiation, scales with the number of design variables.
However, its automatable implementation, readability, and
discrete consistency with the analysis problem are major
advantages of the method.

In the current work, a hybrid approach to sensitivity
analysis is developed and implemented. To retain the ability
to scale to large numbers of design variables, the overall
scheme is fundamentally equivalent to the discrete adjoint
approach taken earlier.! However, an alternative means for
forming the residual and cost function linearizations is utilized
where automated complex-variable forms of the discrete
residual and cost function routines are used to compute the
required Jacobians for both the dependent variables and the
grid. This new approach requires detailed knowledge of the
baseline discretization to achieve efficiency comparable to the
previously developed handcoded implementation, however no
manual code differentiation is required. The resulting scheme
is discretely consistent with the baseline solver, provides an
adjoint capability for complex equation sets, and requires
substantially less code development effort than previous
methods.

3 OF 22

HANDOUT VERSION OF ATAA PAPER 2005-0324

5E. J. Nielsen, Aerodynamic Design
Sensitivities on an Unstructured Mesh

Using the Navier-Stokes Equations and
a Discrete Adjoint Formulation, Ph.D.
thesis, Virginia Polytechnic Institute
and State University, Blacksburg, Vir-
ginia, 1998.

E. J. Nielsen and W. K. Anderson,
“Aerodynamic Design Optimization on
Unstructured Meshes Using the Navier-
Stokes Equations”, AIAA Journal,
37(11), 1999, pp. 1411-1419.

E. J. Nielsen and W. K. Anderson,
“Recent Improvements in Aerodynamic
Design Optimization on Unstructured
Meshes”, AIAA Journal, 40(6), 2002,
pp. 1155-1163.

E. J. Nielsen, et al., “An Implicit,
Exact Dual Adjoint Solution Method
for Turbulent Flows on Unstructured
Grids”, Computers and Fluids, 33,
2004, pp. 1131-1155.

6G. J-W. Hou, et al., Transonic Turbu-
lent Airfoil Design Optimization with
Automatic Differentiation in Incre-
mental Iterative Forms, ATAA 95-1692,
1995.

L. L. Sherman, et al., First- and
Second-Order Aerodynamic Sensitiv-
ity Derivatives via Automatic Differ-
entiation with Incremental Iterative
Methods, ATAA 94-4262, 1994.

B. Mohammadi, Optimal Shape De-
sign, Reverse Mode of Automatic Dif-
ferentiation and Turbulence, ATAA
97-0099, 1997.

R. T. Biedron, et al., “Parallel Compu-
tation of Sensitivity Derivatives with
Application to Aerodynamic Optimiza-
tion of a Wing”, in HPCCP/CAS

Workshop 98, NASA Ames Research
Center, 1998.

A. Carle, et al., Preliminary Results
from the Application of Automated
Adjoint Code Generation to CFL3D,
ATAA 98-4807, 1998.

7J. N. Lyness, “Numerical Algorithms
Based on the Theory of Complex Vari-
ables”, in Proceedings ACM 22nd Na-
tional Conference, Thomas Book Com-
pany, Washington, D.C., 1967, pp.
124-134.

8W. K. Anderson, et al., “Sensitivity
Analysis for the Navier-Stokes Equa-
tions on Unstructured Meshes Using
Complex Variables”, AIAA Journal,
39(1), 2001, pp. 56-63.

9W. L. Kleb, et al., Collaborative Soft-
ware Development in Support of Fast
Adaptive Aerospace Tools (FAAST),
ATAA 2003-3978, 2003.

10E. J. Nielsen, et al., “An Implicit,
Exact Dual Adjoint Solution Method
for Turbulent Flows on Unstructured
Grids”, Computers and Fluids, 33,
2004, pp. 1131-1155.



The remainder of this paper is divided into the following
sections. First, the discrete adjoint approach for aerodynamic
sensitivity analysis is reviewed to motivate the need for a
method by which linearizations of complicated algorithms
can be obtained with minimal effort. A brief overview of
the complex-variable approach to function differentiation is
given, including the relevant advantages and disadvantages of
the method. Following this, the formulation of the proposed
hybrid complex-variable/adjoint approach is described, which
includes an in-depth discussion of the automated generation
of complex-valued source code for the residual and objective
function evaluations as well as important implementation
details critical to the efficiency of the new scheme. Verification
of the method is shown for fully turbulent flow by using
comparisons with a direct discrete approach as well as the
previously developed handcoded discrete adjoint capability. A
large-scale test case is used to demonstrate the computational
efficiency of the new scheme relative to the handcoded
implementation. Finally, the generality of the new method
is explored by applying it to high temperature gas equation
sets required for hypersonic aerothermodynamic analysis.
Conclusions and opportunities for future research are given.

2 The Discrete Adjoint Approach for
Aerodynamic Sensitivity Analysis

The governing equations are the compressible and incompress-
ible! Euler and Reynolds-averaged Navier-Stokes equations.
The system is closed using the perfect gas equation of state.
For turbulent flows, the one-equation Spalart-Allmaras model
is used.'? The derivation of the discrete adjoint system is
widely available in the literature and is not repeated here.
Using the approach outlined in Nielsen et al.,'? the final set of
discrete equations takes the following form:

1% oR 1T . [oR1" ., of
{At” o) }AAf— o) M ae O

with A?H = A} — AA%. Here, V and At are the local
cell volume and time step, respectively, R is the discretized
residual vector for the governing equations, Q* is the vector of
steady-state dependent variables, Ay is the vector of flowfield
adjoint variables, and f is the objective function. As discussed
in Nielsen et al.,' any convenient linearization of R may be
used on the left hand side, provided it is sufficient to converge
the problem. However, the linearizations of the residual and
cost function appearing on the right-hand side must be exact.
These terms can be extremely cumbersome to implement and
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often involve linearizations of complex algorithms such as
reconstruction operators, flux limiters, boundary conditions,
and turbulence models.

Once equation 1 on the preceding page has been solved for
the flowfield adjoint variable Ay, the sensitivity vector V f may
be computed as

0X

aD:| surface

where D represents the vector of design variables, X is the
computational mesh, and A, is an additional adjoint variable
which satisfies a grid adjoint equation:'4

T
KTAg:—{g)J;+ [gi] Af}. (3)

Here, a mesh movement scheme of the form KX = Xy face 18
used during the design procedure.’® Note that in general, the
linearizations of R and f with respect to the grid that appear
in the right hand side of equation 3 are just as cumbersome to
obtain as those for equation 1 on the preceding page.

_of
~ oD
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3 Differentiation of Real-Valued Func-
tions by Using Complex Variables

In Lyness,'® a Taylor series with a complex step size ih has
been used to derive an expression for the first derivative of a
real-valued function f(z):

~ .
fla) = SHEEL o) (1)
Several observations can be made about equation 4. As with
real-valued central differencing, the expression is second-order
accurate; however, there is no subtraction of neighboring
terms involved. This analytical extension allows true second-
order accuracy to be realized, where two additional digits of
accuracy are obtained for each order of magnitude reduction
in the step size h. Moreover, implementation of the method
is straightforward: declare all floating point variables complex
and apply a complex perturbation to the design variable of
interest. Execute the simulation, and upon completion, the
imaginary part of the output is the partial derivative with
respect to the perturbed variable multiplied by the step size
h. The drawbacks to this technique are the need to recompute
f for each perturbation and the additional cost of performing
complex arithmetic.
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4 Using Complex Variables to Form
Discrete Adjoint Operators

As discussed in section 2, the exact linearizations of R and
f with respect to Q and X as required by equations 1 and 3
on the proceeding pages can be very difficult to obtain by
hand. To circumvent these difficulties, the current work uses
the complex-variable approach to obtain these linearizations.
Because the complex-variable method is a direct mode of
differentiation, the cost scales directly with the number of
perturbations and, therefore, must be carefully implemented
to be of practical use. For example, consider a residual
computation on an unstructured grid using a node-based
scheme. Unlike a structured-grid solver, the neighbors
contributing to the residual at a node are usually not directly
known; rather, an edge-based data structure is commonly used.
In this manner, a residual computation typically involves a
series of global gather operations to form the discrete residual
vector across the entire field. To form the complete [OR/8Q)”
operator using complex variables, each component of Q at
every grid point in the field must be perturbed independently,
after which a complex-valued residual must be evaluated to
construct the corresponding row of the Jacobian [OR/0Q]”.
If n denotes the number of points in the grid, then this
relationship implies 6n complex residual evaluations to form
the complete Jacobian matrix for three-dimensional turbulent
perfect gas flows. Clearly, this cost would be prohibitively
expensive if the implementation were performed in an ad hoc
manner.

Implementation

The flow solver used in the current work employs an implicit,
upwind, finite volume discretization in which the dependent
variables are stored at the mesh vertices.!'” Scalable par-
allelization is achieved through domain decomposition and
message passing communication. Inviscid fluxes at cell in-
terfaces are computed using the upwind schemes of Roe'®
or Van Leer.' Viscous fluxes are formed using an approach
equivalent to a central difference Galerkin procedure. For
steady-state flows, temporal discretization is performed by
using a backward-Euler time-stepping scheme.

An approximate solution of the linear system of equations
formed at each time step is obtained through several iterations
of a point-iterative scheme in which the nodes are updated in
an even-odd fashion, resulting in a Gauss-Seidel-type method.
For viscous flows, this scheme is augmented with a line-
relaxation algorithm in boundary layer regions as described in
Nielsen et al.??
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The turbulence model is integrated all the way to the wall
without the use of wall functions and can be solved in a tightly
coupled fashion?! or separately from the mean flow equations
at each time step with an identical time integration scheme.
The resulting linear system is then solved with the same
iterative schemes employed for the flow equations.

Previously, a discrete adjoint capability has been developed
for the solver through hand differentiation, and the resulting
adjoint system of equations is solved using an exact dual
algorithm.?! This solver framework is employed in the current
work; however, the required linearizations are formed using
complex variables as described below.

Automated Generation of Complex-Valued Source Code

The capabilities described above have been implemented in a
suite of Fortran 95 modules that conform to a coding standard
that facilitates an automated conversion to complex variables,
and Ruby code was written to automate the conversion of the
baseline real-valued solver to a complex-variable formulation.??
This operation yields a capability equivalent to discrete direct
differentiation. Because this process is fully automated, the

maintenance associated with debugging and synchronizing the
complex-valued solver with the baseline solver is eliminated.

In the current work, a similar automated conversion is
developed. However, many of the routines required by the
residual and objective functions are shared by other parts
of the adjoint solver. For this reason, it is necessary not
only to create the complex-variable forms of the source code
components that form R and f, but also to maintain their
original real-valued counterparts and ensure that they can
safely coexist. These pieces include not only subroutines
and functions but also module variables and derived-type
definitions.

Many of the basic elements of the previous work?? are lever-
aged for the current work; however, the need to simultaneously
support real and complex variants of the various components
requires considerable additional effort. For example, within
complex-valued routines, Fortran 95 use statements importing
variables, routines, and type definitions from other modules
must be modified to use the appropriate complex-valued ver-
sions. Moreover, to handle layered call stacks, this capability
must be recursive. The full procedure is accomplished in three
passes, which are outlined in the sidebar.

The auto-generated complex version of the code is joined to
the existing adjoint solver framework by means of a standard
Makefile. The complex version is first generated from the
baseline flow solver, appropriate Makefile dependencies are
generated, and finally, all code is compiled and linked to form
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Read-Only Pass

Find all modules on which the residual
and objective functions depend and
gather information about what they
contain. Specifically, record: module
name, subroutines, functions,
derived-type definitions, and
module-level real and derived-type
variable declarations.

Main Code Generation Pass

Create complex versions of type
definitions that contain real-valued
variables

Insert complex versions of the real
and derived-type module variables and
their associated public declarations

Create complex copies of all functions
and subroutines and, within each,
change variable references and calls
appropriately

Insert a subroutine within each
module that can be called to allocate
and synchronize the complex- and
real-valued module variables

Driver Code Generation Pass

Create a main synchronization routine
that calls all of the individual
module-based synchronization
routines. This layered approach is
necessary to avoid name-space
collisions of module variable names.



the composite adjoint solver. A similar approach is taken
for the source code used to evaluate the right-hand side of
equation 3 on page 5.

Coloring Scheme for Complex Residual Evaluations

Consider the formation of the Jacobian matrix A = [0R/0Q]”
using complex variables, where the perturbation size in equa-
tion 4 on page 5 is taken to be the square root of the Fortran 95
intrinsic tiny () applied to a standard double precision real
variable. After applying the complex perturbation {AQ to an
element of Q at grid point j, the entry Aj; can be determined
by performing a complex residual evaluation and mining the
imaginary parts of the residual at node k. In this manner,
the rows of A can be constructed in a sequential fashion by
successively perturbing the elements of Q at every grid point
in the field. As noted above, this would require a complex
residual evaluation for every grid point and every dependent
variable in the field. However, note that upon applying a
perturbation {AQ and evaluating the complex-valued residual,
the imaginary part of R will be largely zero. The only nonzero
terms will lie within the stencil width of the residual operator.
For the discretization used in the current work, these terms
correspond to the nearest and next-nearest neighbors of the
perturbed grid point. A significant speedup can be realized by
taking advantage of this property.

Prior to applying any complex perturbations to the field,
the grid is preprocessed to establish node colorings. The
nodes in each color represent nodes that do not lie within a
stencil width of another, and, therefore, may be simultaneously
perturbed and processed by the complex residual routine. In
this manner, a much larger number of elements in A may be
computed during a single complex residual evaluation across
the domain.

Consider the one-dimensional structured grid shown in
figure 1 and a five-point discretization. The first node is placed
into the first color, and the neighboring nodes within a stencil
width are tagged. The rest of the field is then searched for
nodes which do not depend on any tagged nodes. If a node is
found, it is added to the current color and the neighbors within
its stencil are also tagged. This process continues until no more
nodes can be found. At that time, the tags are reset and a new
color is initiated. This algorithm is repeated until every node
in the field is placed in a color. For the five-point stencil used
in figure 1, this results in five colors. Rather than a separate
complex residual evaluation for each dependent variable at
each of the 26 grid points, the coloring scheme requires just
5 complex residual evaluations for each dependent variable.
For a similar discretization on a three-dimensional structured
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Figure 1: Perturbation coloring scheme
on one-dimensional grid, where (o) indi-
cates a perturbation.



grid, 125 colors would be expected. For the three-dimensional
unstructured grids used in the current work, there are typically
between 150 and 200 colors.

Parallelizing the coloring scheme described above is straight-
forward. In the event that candidate points for perturbations
on neighboring processors exhibit overlapping stencils at the
partition boundaries, the higher-numbered processor is allowed
to place its candidate into the current color, while the other
processor must place its candidate node into a later color. This
strategy is simplistic and by no means optimal; the partitioned
color groups are generally not load-balanced. However, this
drawback has not been serious enough to warrant a more
elaborate algorithm.

The mesh linearization R /90X required by equation 3 on
page 5 is formed in an analogous fashion by applying complex
perturbations to the grid coordinates. Here, a complex
evaluation of the grid metrics is required prior to the residual
computation, as these underlying terms are also affected by
such perturbations.

Localized Residual Computations

The scheme described above can yield colors containing
widely varying numbers of grid points. The initial colors may
contain several hundred grid points; however, the final color
groups may each contain only a single grid point. With fewer
grid points per color, evaluating a complex-valued residual
across the entire field becomes increasingly inefficient. To
further reduce the overall computational cost, the routines
used to evaluate R have been modified to accept an optional
list of elements over which to operate. As the nodes in
the current color are perturbed, a temporary collection of
edges and cells within their stencils is gathered as shown in
figure 2. By supplying the residual routines with only those
elements required to compute residuals within a stencil width
of the nodes in the current color, the overall cost is reduced
substantially. In the case of a color containing a single grid
point, the residual evaluation now takes place over several
dozen edges and cells, as opposed to the millions that may be
present in the entire grid.

Strong Boundary Conditions

The backward-Euler time integration strategy used in the flow
solver results in a linear system of equations at each time step
n that takes the following general form:

[VI R

AT g AQ" = “R(@) o)
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complex-valued residual routines, where
(o) indicates a perturbation. Solid edges
are needed for second-order accurate

inviscid terms; shaded elements are nec-
essary for viscous contributions.



with Q"1 = Q" + AQ"™. For viscous flows, no-slip and
prescribed wall temperature boundary conditions are imposed
using a strong enforcement at solid surfaces.??> While the
continuity equation at the boundary is formed and solved in
the same manner as in the interior, the energy at the wall is
directly related to the density through the following expression,

Ty

F = y(y—1)

Pw (6)
where a w subscript indicates a wall quantity. Along with
the no-slip condition, this relationship is used to modify the
diagonal block for rows of the linear system in equation 5 on
the preceding page corresponding to grid points on viscous
walls (associated off-diagonal entries are set to zero):

Dy D12 D1z Dy Dis Dig|| Apw Ry
0 1 0 0 0 0||A(pue 0
00 100 0 A o] g
0 0 0 1 0 0|]A(pwe 0
W(T_wl) O 0 0 1 0 AE, 0
0 0 0 0 0 1| An 0

Note that the components for the momentum, energy, and
turbulence equations in the right-hand side of equation 7 are
set to zero at the end of a residual evaluation, whereas the
residual at the wall is formally given by:

Ry
(Pu)w
)

R, = (e | (8)
(pw)w
Tw

Bw = 555y P

Vu

This has important ramifications in forming the Jacobians by
using the complex-variable technique. Evaluating a complex
form of the residual will result in identically zero elements for
the linearizations of the momentum, energy, and turbulence
equations at the wall. To remedy this, the Jacobian elements
corresponding to these equations are explicitly set according
to equation 7 once the entire matrix has been assembled.
Although this extra step is straightforward, it would not
be necessary if the residual vector was formed according to
equation 8. This detail will be addressed again in a subsequent
section.
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Cost Function Linearizations

Unlike a residual computation where the output is a vector of
quantities associated with each grid point, the cost functions
used in the current work are composed of boundary integrals
that yield scalar quantities such as lift and drag. This implies
that only a single contribution to df/0Q or 0f/0X may be
determined by a complex force evaluation. For this reason,
multiple perturbations cannot be performed simultaneously
as with the residual contributions. However, similar to the
strategy used for residual computations, the complex-valued
force routines are restricted to a subset of boundary elements
that are affected by a perturbation as shown in figure 3.
The need to perform boundary perturbations in a sequential
fashion does not have a considerable impact on the overall
efficiency of the scheme, as the boundary integrals are generally
inexpensive and the boundaries are typically much smaller
than the domain as a whole.

For parallel computations, the grid is partitioned without
knowledge of surface information. For this reason, the surfaces
contributing to the cost function are in general not evenly
distributed across processors and the construction of the cost
function linearizations is not load-balanced. This has not been
found to cause a serious performance penalty.

Distance Function Linearizations

For turbulent flows, the one-equation model used in the
current work contains a source term that depends on the
distance to the nearest solid wall. This dependency enters
the linearization OR/0X and is the only quantity in the
entire solver that depends on values outside the next-nearest
neighbor stencil. For this reason, the coloring scheme described
earlier cannot be used for simultaneous perturbations of grid
coordinates to construct the distance function contribution
to OR/0X. Moreover, coloring the stencil pattern associated
with the distance function would be cumbersome and likely
result in a very inefficient scheme.

Similar to the cost function linearizations, the derivatives of
the residual contributions involving the distance function were
initially constructed by applying perturbations in a sequential
fashion. However, unlike the cost function, which depends
at most on the surface values and their nearest neighbors,
the distance function linearizations depend on every grid
point in the field. For large-scale problems, it has been found
that constructing these contributions in a sequential manner
is prohibitively expensive. For this reason, the handcoded
implementation of these terms is used,?* wherein the nearest
element on the surface is stored for every grid point in the
field, so that the distance function at each grid point can be
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differentiated very efficiently. A similar scheme could certainly
be constructed for the complex-variable approach; however,
this has not been pursued. Other limitations of large stencil
widths will be discussed in a subsequent section.

Computing the Adjoint Residual

Since Q is fixed for the adjoint problem, the terms [OR/0Q]"
and 0f /0Q are formed and stored at the start of a computation
using the strategies outlined above. As a consequence, the
adjoint residual on the right hand side of equation 1 on page 4
becomes an explicit matrix-vector product at each time step.
This is in contrast to the handcoded method,?® where only the
nearest-neighbor terms were stored and the higher order pieces
were recomputed at each time step in order to save memory.
A similar strategy could be used for the complex-variable
implementation; however, the computational cost associated
with recomputing terms at each time step would be prohibitive.
As compared to the handcoded implementation, the current
approach requires considerably more CPU time and memory
to form and store the linearizations required for equation 1;
however, the subsequent performance of the adjoint residual
computation yields an overall computational savings that will
be demonstrated below.

Consistency of Linearization

To verify the accuracy of the implementation, a comparison
is made using three discrete methods for obtaining sensitivity
derivatives as listed in table 1. The first method is a direct
form of differentiation obtained by converting the entire flow
solver to a complex-variable formulation. This process has
also been fully automated.?® The second approach used to
compute the linearizations is the handcoded discrete adjoint
technique.?® Finally, the third method is the hybrid approach
of the current work where a complex-variable formulation is
used to form the discrete adjoint system. All equation sets
have been converged to machine precision.

Sensitivity derivatives of the lift and drag coefficients for
the ONERA M6 wing?” shown in figure 4 are computed for
fully turbulent flow using each of the methods described
above. The mesh contains 16,391 nodes and 90,892 tetrahedra.
The freestream Mach number is 0.84, the angle of attack is
3.06 degrees, and the Reynolds number is 1 million based
on the mean aerodynamic chord. The surface grid has been
parameterized using the method of Samareh.?® All of the
computations have been performed using 12 processors.

Sensitivity derivatives of the lift and drag coefficients for
several shape parameters located at the midspan of the wing
are listed in table 2 on the following page. The results
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Table 1: Schemes used to obtain sensi-
tivities.

Method Linearization Algorithm

1 Direct differentiation via
automated complex variables

2 Handcoded discrete adjoint

3 Automated complex-variable

discrete adjoint

26 W. L. Kleb, et al., Collaborative Soft-
ware Development in Support of Fast
Adaptive Aerospace Tools (FAAST),
ATAA 2003-3978, 2003.

27V. Schmitt and F. Charpin, “Pres-
sure Distributions on the ONERA M6
Wing at Transonic Mach Numbers”,
in Ezperimental Database for Com-
puter Program Assessment, AGARD,
AR-138, 1979, pp. B1:1-44.

Figure 4: Surface grid for ONERA M6
wing configuration.

28 J. A. Samareh, A Novel Shape Pa-
rameterization Approach, NASA TM-
1999-209116, 1999.



of the three approaches are in excellent agreement, with
discrepancies present in only the eleventh decimal place or

Table 2: Sensitivity derivatives for lift and drag coefficients using various approaches.

Objective

Design Variable

. Method
Function thickness shear camber twist
1 -0.584383430968430 -0.073891855284066 1.843734584180741 -0.022010251214990
Cr 2 -0.584383430968115  -0.073891855283921  1.843734584180955  -0.022010251214989
3 -0.584383430968976  -0.073891855204895  1.843734584179641  -0.022010251215037
1 0.058894900355748  -0.006835640271421  0.064393773359600  -0.001817294278046
Cp 2 0.058894900355780  -0.006835640271392  0.064393773359720  -0.001817294278046
3 0.058894900355586  -0.006835640272820  0.064393773359577  -0.001817294278054
better. For turbulent flows, it should be noted that the

last several digits are often still fluctuating despite machine
precision convergence.

Large-Scale Performance

To evaluate the current scheme on a large-scale problem,
fully turbulent flow over the transport wing-body shown in
figure 5 is computed using 64 processors. The grid for this
case contains 1,731,262 nodes and 10,197,838 tetrahedra.
The freestream Mach number is 0.84, the angle of attack is
2.25 degrees, and the Reynolds number is 3 million based
on the mean aerodynamic chord. For this test, the objective
function is the drag coefficient. Although this case was
previously shown,?? the performance trends shown here cannot
be directly compared with the prior results, as the mean NN \
flow and turbulence equations have been solved in a loosely
coupled fashion in the current work, as opposed to the tightly
coupled solution procedure utilized earlier. The extra Jacobian
terms required for a tightly coupled flow solution can have a
considerable impact on the relative performance of the flow
and adjoint solvers.

The iterative convergence of the flow solver as well as the
handcoded and complex-variable adjoint solvers is shown in
figure 6 on the following page. After 3,000 time steps, the
two histories exhibit similar asymptotic convergence rates
for the density and turbulence equations and their adjoint
counterparts, as guaranteed by the exact dual nature of the
iterative algorithms. Note that the complex-variable adjoint
scheme lies exactly on top of the handcoded implementation
as would be expected; any discrepancy would indicate an error
in the implementation.

Figure 5: Surface grid for modern trans-
port configuration.

29E. J. Nielsen, et al., “An Implicit,
Exact Dual Adjoint Solution Method
for Turbulent Flows on Unstructured
Grids”, Computers and Fluids, 33,
2004, pp. 1131-1155.
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Figure 6: Residuals versus iteration for modern transport Figure 7: Residuals versus CPU time for modern transport
configuration. configuration.
On a per processor basis for the current test case, the
flow solver uses 92 MB of memory, the handcoded adjoint
solver requires 220 MB, and the complex-variable adjoint
solver uses 630 MB. The discrepancy between the two adjoint
implementations is due to the linearization storage strategies
described earlier and is consistent with the discussion in
Nielsen et al.3® The benefit of storing the entire linearization
b in fi h h . ] d 30E. J. Nielsen, et al., “An Implicit,
can be seen in figure 7, where the convergence is plotted versus Exact Dual Adjoint Solution Method
CPU time for each solution. The handcoded adjoint solver for Turbulent Flows on Unstructured

Grids”, Computers and Fluids, 33,

requires approximately twice as long as the flow solver to 2004, pp. 11311155

perform 3,000 time steps. However, since the matrix-vector
product required by the residual in equation 1 on page 4 is
performed explicitly in the current approach, the complex-
variable adjoint solver requires 60% less CPU time than the
handcoded implementation. A subtle feature in figure 7 is the
y-axis offset for the complex-variable adjoint results (easiest to
see for the turbulence equation). This is the initial setup time
required to construct the exact linearizations of the residual
and cost function using complex variables.

5 Extension to High-Temperature Gas
Equation Sets

There has been a significant effort recently within the CFD
community to provide accurate and robust hypersonic aero-
dynamic and aerothermodynamic capabilities within unstruc-
tured grid frameworks, and progress to date has resulted in
significantly more elaborate flow solution algorithms. In addi-
tion to the nonlinear limiter functions necessary for supersonic
flows, high-energy flow solvers typically contain curve fits for
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transport properties, eigenvalue limiters, a variable number

of species and energy equations, and may employ embedded
Newton iterations to determine thermodynamic properties or
to implement boundary conditions.

Consider the handcoded discrete adjoint implementation for
the perfect gas Reynolds-averaged Navier-Stokes equations.3!
This capability has taken over 5 years to evolve into a mature
capability for large-scale problems. Any extension to its basic
functionality remains an extremely sobering undertaking, and
manually extending it to include the additional complexities
required for thermochemical nonequilibrium flows is simply
untenable. This issue has instead served as the primary
motivation for the current work, wherein an automatable,
more efficient, and less error-prone procedure for developing
a discrete adjoint solver for increasingly complex sets of
governing equations has been sought.

Although obtaining reliable stagnation-point heating on
purely tetrahedral grids is proving an elusive goal, the current
adjoint formulation has been extended to include the high
temperature gas effects that have been recently added to the
baseline solver.3? This has been done to demonstrate the
power of the current approach to forming discrete adjoint
systems for more algorithmically complex equation sets.

It is understood that any subsequent adjoint-based design
optimization or solution adaptation would only be as accurate
as the underlying discretization; however, the ultimate value
of the current approach lies in its ability to provide a discrete
adjoint capability in a timely manner for a given discretization.

A detailed overview of the underlying hypersonic algorithms
is presented by Gnoffo and White.?? An extensive suite
of turbulence models has been implemented in the baseline
solver; however, the adjoint formulation has not yet been
tested in this regime. Only some basic implementation issues
are discussed here and a simple test case is shown to verify
the accuracy of the approach and demonstrate its potential
for future hypersonic applications. Areas requiring additional
research are also identified.

Implementation Issues

Extension of the current automated adjoint formulation to
include high temperature gas effects is largely straight-forward,

since the discretization stencil for the various terms is identical

to those in the perfect gas implementation. Therefore, the
infrastructure developed to assemble the various linearizations
using complex variables can be readily applied without
modification. The additional thermodynamic and transport
routines, as well as the source terms required for chemically
reacting flows, have been modified to optionally operate on a
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localized subset of elements in the same manner as the basic
flux and force routines, so that computations are performed
only for contributions with nonzero imaginary parts. Strong
boundary conditions are handled automatically, as the residual
computation on boundaries for the hypersonic portion of
the solver is implemented in a general manner analogous to
equation 8 on page 10.

The flow solver includes options to use temperature or
energy as a fundamental variable. The use of energy (as in the
perfect gas case) requires a Newton subiteration to evaluate
T(e, p;). When a complex perturbation is applied to an element
of Q and this iterative strategy is invoked, the convergence
criterion for this procedure is identically satisfied, since the
real part of the temperature has not changed from its baseline
value, which presumably corresponds to the current value of
the energy. However, the imaginary part of the temperature
will be incorrect, as the iterations required to determine this
component have been terminated immediately. Therefore,
when this procedure is invoked in a complex-valued context,
the Newton algorithm is forced to perform ten iterations—
the maximum allowed for the real-valued case—to allow the
imaginary part of the temperature to develop correctly.

Demonstration Case

A 5-species air laminar flow cylinder test case is performed.
Shown in figure 8, the grid used for this case contains 4,040
nodes and 11,520 tetrahedra and has been derived from a
structured grid similar to those used by Gnoffo and White.3*
The grid contains a single layer of cells in the spanwise
direction. Note that the structured grid cells have been
diagonalized in a uniform manner so that a severe spanwise
bias is present in the computation. This grid topology is being
heavily relied upon in related work for “stress-testing” the
accuracy of various discretization schemes on tetrahedra.

For this test, the freestream velocity is 5,000 m/s, the
freestream density is 0.001 kg/m?, and the temperature
is 200 K. These conditions give a Reynolds number of
approximately 425,000 based on the cylinder diameter and a
freestream Mach number of 17.6. The flowfield is governed
by nine conservation equations: five species equations (N,
O2, N, O, and NO) and the usual momentum and energy
equations. It should be noted that the convective terms
are only first-order accurate for this demonstration; a more
detailed discussion on the reasons for this limitation will follow
in a subsequent section. The computation has been performed
on eight processors and contours of the Mach number are
shown in figure 8, where a strong bow shock can be seen
upstream of the cylinder. The jagged shock capture is typical
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of a first-order scheme and is exacerbated by the lack of grid
alignment in these regions. The temperature downstream of
the shock in the leading edge region exceeds 6,300 K, causing
the freestream molecules to dissociate; contours of atomic
nitrogen and oxygen are shown in figure 9.

The convergence history of the nine flow equations and their )

.. .. . . 35F. J. Nielsen, et al., “An Implicit,
adjoint counterparts for a drag-based objective function is Exact Dual Adjoint Solution Method
plotted in ﬁgure 10. No attempt has been made to optimize for Turbulent Flows on Unstructured
the solution parameters; a constant CFL number of 1 is %éjfy;;p?fgfﬁtle{;&and Fluids, 33,
used with two point-implicit sweeps through the linearized
problem at each timestep. The equations exhibit similar
asymptotic convergence rates as guaranteed by the exact dual
implementation.?® The residual that seems to stall slightly
earlier than the other equations corresponds to the adjoint
variable for the species conservation of atomic nitrogen. The
reason for this is unknown. Figure 11 shows contours of the
streamwise momentum adjoint solution for drag, as well as the
adjoint variable for the O9 species conservation equation for an
objective function based on the net heat flux to the cylinder
surface.

To quantify the accuracy of the discrete adjoint implementa-
tion, sensitivity derivatives of the lift, drag, and surface heating

with respect to the streamwise coordinates of three randomly Figure 11: Contours of the streamwise

. . . momentum adjoint variable for drag
chosen grid points on the cylinder surface are computed and (left) and O species conservation adjoint
shown in table 3. Similar to the perfect gas test case shown variable for heating (right).

Table 3: Sensitivity derivatives for lift, drag, and heating using various approaches.

Design Variable

Objective
FurJ1ction Method #1 #2 #3
1 1 0.079063607430172  0.040542677709286  0.036254858359808
3 0.079063607430244  0.040542677709607 0.036254858359736
o 1 -0.090184472046108  0.052086957502726  0.048939766511917
P 3 -0.090184472039446  0.052086957503082  0.048939766511939
. 1 0.092618219139863  0.052427889309767  -0.144725668575523
3 0.092618219167176  0.052427889311309  -0.144725668580864
earlier, these derivatives are computed using two discrete Table 1: (Repeated for convenience.)

methods previously outlined in table 1. The first method is
the direct differentiation approach attained by converting the
entire baseline solver to a complex-variable formulation. The

Method Linearization Algorithm

1 Direct differentiation via
automated complex variables

second is the current discrete adjoint approach, using complex 5 Handcoded discrete adjoint
variables to obtain the required linearizations. The agreement 3 Automated complex-variable
is similar to that obtained for the perfect gas results. discrete adjoint

Further Research and Development Areas

One issue associated with using the complex-variable approach
to form the discrete adjoint system for hypersonic flowfields
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is the memory required to store the complete linearization of
the residual. For the next-nearest neighbor stencil used in the
current implementation, the residual at a grid point generally
depends on information from roughly 50 neighboring points.
A typical hypersonic computation might be performed on a
grid consisting of 10 million points; therefore, approximately
500 million nonzero subblocks will be present in the Jacobian
matrix. For 5-species air with a single energy equation model,
nine governing equations are required, so that each subblock
in the Jacobian matrix will contain 81 entries. If standard
8-byte double-precision variables are used to store each of these
values, approximately 320 GB of memory will be required to
store the complete linearization. This represents a substantial
amount of memory, even on the largest computing systems
currently available, and opportunities to alleviate this memory
requirement should be investigated. Moreover, this issue
lends further motivation to the pursuit of adjoint-based grid
adaptation,3® where grid points are concentrated only in areas
that have the highest impact on the output of interest, thereby
avoiding unnecessary grid resolution in irrelevant regions of
the flowfield.

Another concern in applying the adjoint technique is the
requirement that the flowfield solution be linearly stable.

At the conclusion of a flowfield computation, the solution
may appear satisfactory in an engineering sense; forces have
converged to some tolerance, and the residuals of the nonlinear
system have been reduced to some acceptable level. However,
the flowfield may, in fact, contain some linearly unstable
modes. These modes can often be bounded or stabilized by
nonlinearities present in the flowfield computation; however,
the adjoint system has no such control mechanisms and any
instabilities will amplify and cause the solution to diverge.
The need for flux-limiting strategies in second-order accurate
hypersonic computations may contribute to this problem; it is
for this reason that no second-order accurate results have been
presented here for hypersonic flows. An ability to monitor
diagnostics of the linearized system of equations and address
such instabilities would be a valuable capability and should be
a focus of future work. This requirement for linear stability has
occasionally been a problem for turbulent perfect gas flows,
and similar issues have also been reported elsewhere.3”

The presence of trace species has been found to cause
sporadic problems in solving the adjoint system of equations.
For example, in a 5-species air computation, the freestream
concentrations of N, O, and NO are set to 1x 10719 in
the current implementation. Adjoint computations for such
flowfields have occasionally shown a tendency to diverge, and
increasing the species concentrations in the freestream has
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been found to overcome this difficulty. The exact cause of this
breakdown has not yet been investigated in detail.

Finally, the efficiency problems associated with linearizing
the distance function due to its inherently large stencil
may foreshadow similar difficulties to be encountered in
forming discrete adjoint systems for problems governed by
integro-differential equations such as magnetohydrodynamic
applications and flowfields involving radiation. Discretizations
of these types of systems generally involve noncompact stencils
and, therefore, their linearizations may also be prohibitively
expensive to construct using a complex-variable formulation.

Despite these technical challenges, the current approach is an
enabling technology for pursuing rigorous design optimization
and adaptation for high energy flows. The perfect gas
implementation has proved invaluable for a wide range of
vehicle concepts. Aerodynamic optimizations for full aircraft
configurations using large numbers of design variables have
been performed with minimal expense,*® and adjoint-based
mesh adaptation and error estimation has been used to
efficiently obtain grid-converged solutions for high Reynolds
number, geometrically complex flowfields.?? Furthermore,
ongoing work is aimed at coupling these capabilities to enable
simultaneous design and adaptation. This coupling will not
only drastically reduce design cycle time but, perhaps more
importantly, provide error bounds on the result. The extension
of these technologies to high temperature gas equation sets will
allow these computations to span the speed range, eventually
encompassing scramjets, interplanetary probes, and manned
space exploration vehicles.

6 Summary and Conclusions

A new technique for obtaining exact linearizations of com-
plicated real-valued residual operators and cost functions
necessary for discrete adjoint computations has been de-
scribed. The method has been implemented for turbulent
flows within a three-dimensional unstructured grid framework,
where the complex-valued source code is generated using
an automated scripting procedure. A number of efficiency
issues have been addressed as well as implementation details.
Sensitivity derivatives computed using the new scheme are
in excellent agreement with results from a discrete direct
approach as well as a previous handcoded discrete adjoint
implementation. Since the new scheme stores the complete
linearization of the residual, the method requires considerably
more memory than the existing handcoded approach. However,
this reduces the adjoint residual computation to an explicit
matrix-vector product so that the overall computational cost
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for large-scale problems is reduced.

To demonstrate the power of the new approach, the method
has also been extended to include finite-rate chemistry models
necessary for hypersonic flows. Sensitivity derivatives for
5-species reacting air have been computed using the new
scheme and agreement with a discrete direct approach has
been demonstrated.

The impact of the new approach on the software develop-
ment cycle necessary to achieve a discrete adjoint capability is
difficult to overstate. The previous handcoded implementation
required on the order of 5 years to mature into a robust tool
suitable for everyday large-scale perfect gas turbulent flow
applications. By using the new complex-variable approach to
achieve the required linearizations, an equivalent capability for
turbulent flows was achieved with only 6 weeks of development
effort. The experience and software infrastructure gained
through the lengthy hand differentiation process certainly
provided an excellent foundation for the new effort; however,
despite this headstart, the new method has the potential to
reduce the software development cycle by an order of magni-
tude or more. Although a number of issues warrant further
research, the current scheme has opened the door to rigorous
adjoint-based hypersonic aerodynamic and aerothermody-
namic design optimization and solution adaptation, which up
until recently were mere visions.
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